Pinhas - Рваный отзвук... | Rvanyi otzvuk...

Reklam
Rusça/Romanization/Romanization 2
A A

Рваный отзвук... | Rvanyi otzvuk...

Рваный отзвук прерванного пенья
влажный воздух разнесет окрест.
Тишина как головокруженье
время обесцветит на заре.
 
Несуразным пламенем объят,
день горит, разбрасывая искры
в души, кружки, яблоневый сад,
добрый, слабый, непривычно близкий.
 
Pinhas ZelenogorskyPinhas Zelenogorsky tarafından Cum, 23/08/2019 - 01:13 tarihinde eklendi
Ekleyenin yorumları:

1988 год

Teşekkürler!8 teşekkür aldı

 

Reklam
Video
Pinhas: Top 3
Yorumlar
dandeliondandelion    Cum, 23/08/2019 - 04:48

Хорошо как!
И "несуразное пламя" понравилось (очень неожиданно, но точно, и в нарисованную картину хорошо вписывается), и "рваный отзвук", и "тишина как головокруженье", и "обесцвеченное" время...
У меня такое настроение было несколько дней назад, когда я ночевала на даче. Пытаюсь назвать (или описать) одним словом и своё тогдашнее состояние, и Ваш стих, но пока не получается... )
А ведь это из совсем раннего, да?

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 14:17

Да, спасибо, действительно, из совсем раннего. Чуть ли не первое. Я ему наверно даже пару лет приписал, чтобы на службу призвать.

dandeliondandelion    Cum, 23/08/2019 - 14:48

Теперь я, кажется, знаю, сколько Вам лет. )))
А слово, наверное, будет вот такое - умиротворение... )

St. SolSt. Sol    Cum, 23/08/2019 - 17:10

Была такая старая логическая задача (не ручаюсь за точность - now corrected):
Одному человеку (#1) сказали сумму двух положительных целых чисел, а другому (#2) - их произведение. Они обсуждают это:
#1. Я не знаю какие это числа.
#2. Я тоже не знаю этого.
#1. Тогда я знаю их.
#2. Тогда и я их знаю.
Вопрос: Назовите эти числа.

dandeliondandelion    Cum, 23/08/2019 - 15:07

Наверное, оба чётные? Правильно рассуждаю, нет? )

dandeliondandelion    Cum, 23/08/2019 - 15:08

Или там всё-таки конкретные числа можно определить? Я пока не знаю, как.

St. SolSt. Sol    Cum, 23/08/2019 - 15:15

Ответ - единственен.

dandeliondandelion    Cum, 23/08/2019 - 15:09

Это называется - чем занять чукчу на сутки. )))

St. SolSt. Sol    Cum, 23/08/2019 - 15:30

7 = 4+3 = 5+2 = 6+1; 12 = 12*1 = 6*2 = 4*3
Нет.

BratBrat    Cum, 23/08/2019 - 15:39

При условии, что числа ненулевые и не равны:
2+3=5=4+1
4*1=4=2*2
2*3=6=6*1

St. SolSt. Sol    Cum, 23/08/2019 - 15:46

Таких условий не было: возможны все целые числа кроме отрицательных.

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 15:45

Да, я уже понял. 3 и 4 подходят, если на числа наложены ограничения, что они натуральные, больше 1. На отрицательные тоже смотрим? Если можно 0, то 0 и что-нибудь еще подходит.
Задачка на перебор: найти а и b такие, что хотя бы одно из них составное, а все иные разложения их суммы на два слагаемых будут состоять из простых чисел.

JadisJadis    Cum, 23/08/2019 - 15:45

2 and 2 ?
2 + 2 = 4, but 1 + 3 also = 4 (and if it were 1 and 3, then the product would be 3, not 4, with only 1 possibility : 1 x 3)
2 x 2 = 4, but 1 x 4 also = 4 (and if it were 1 and 4, then the sum would be 5, not 4, with various possibilities for the sum)
Oh damn, I think I forgot what the question was.
(And we suppose that the numbers are positive and > 0)
Whatchutalkingabout smile
 

JadisJadis    Cum, 23/08/2019 - 15:54

I'm surprised myself...

dandeliondandelion    Cum, 23/08/2019 - 15:57

В общем, я была где-то на правильном пути, но не додумала.
Искала подвох и решила, что "какие" - это о характеристиках чисел: чётные/нечётные, положительные/отрицательные... )))
Кстати, в Вашем условии не было сказано, что числа неотрицательные.

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 15:58

2 и 2 не подходят. Ответ может быть 0 и 4.
Когда первый говорит "Тогда я знаю их" - он ошибается.
Задача не решена.

St. SolSt. Sol    Cum, 23/08/2019 - 16:04

Возможно, что допускались только положительные целые числа (точно не помню).

dandeliondandelion    Cum, 23/08/2019 - 15:58

Всё, Сол, можете ставить мне двойку в дневник и зачислять в "слабые умы"! )))

dandeliondandelion    Cum, 23/08/2019 - 16:01

Так всё-таки неотрицательные или положительные?

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 16:11

Ну да, все зависит от допущений. И мы пока не знаем точно, нет ли других таких пар чисел. Это еще нужно доказать. Как писал выше: "Задачка на перебор: найти а и b такие, что хотя бы одно из них составное, а все иные разложения их суммы на два слагаемых будут состоять из простых чисел."
Ясно, что очень большие числа не годятся, у их суммы слишком много разложений.

dandeliondandelion    Cum, 23/08/2019 - 16:13

Да, я об этом тоже думала. Интуитивно понятно, что бОльшие числа не годятся, но как это доказать строго математически?
А так у Жади всё верно при условии, что числа больше нуля.

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 17:44

Сомневаюсь. Жади молодец, но ведь 2 и 4 тоже подходят, не только 2 и 2. Солу - двойка за некорректную постановку!

St. SolSt. Sol    Cum, 23/08/2019 - 17:53

2 and 4 don't fit:
#1: 6 = 5+1 = 4+2 = 3+3; don't know
#2: 8 = 8*1 = 4*2; don't know
#1: 6 = 4+2 = 3+3: still don't know whether #2 got 8=4*2 or 9=3*3

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 18:04

6 раскладывается тремя вариантами:
1 и 5
2 и 4
3 и 3
Первый и третий - два простых. Их произведения (5 и 9) идентифицируется сразу как полупростое число. Остается только 2 и 4.

BratBrat    Cum, 23/08/2019 - 18:05

Вот потому-то должно соблюдаться условие о несовпадении чисел...

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 18:07

Видимо да. Но я не уверен, что больше нет других пар чисел.

BratBrat    Cmt, 24/08/2019 - 01:58

Мамой клянусь: ихтамнет!

St. SolSt. Sol    Cum, 23/08/2019 - 18:16

Вот вам задачка, которая в корне изменила мне жизнь в 16 лет:
приведите пример функции f(x) (или докажите, что такой не существует), для которой верно следующее:
для любых двух аргументов а ≠ b, [f(a)+f(b)]/2 >= f([a+b]/2),
причем для некоторых a и b: строго больше (>), т.е. не равно.

BratBrat    Cum, 23/08/2019 - 17:12
St. Sol wrote:

Вот вам задачка, которая в корне изменила мне жизнь в 16 лет:
приведите пример функции f(x) (или докажите, что такой не существует), для которой верно следующее:
для любых двух аргументов а =/= b, [f(a)+f(b)]/2 >= f([a+b]/2),
причем для некоторых a и b: строго больше (>), т.е. не равно.

Причем для некоторых, которых на самом деле дофига. Wink smile

St. SolSt. Sol    Cum, 23/08/2019 - 17:23

Даже бесконечное "дофига" Q - меньше чем R\Q.  Wink smile

BratBrat    Cum, 23/08/2019 - 17:34

Ну да, ну да... Теория пределов для того и создавалась, чтоб разобраться в сортах "дофигов"...

barsiscevbarsiscev    Cum, 23/08/2019 - 17:55

Это зависит кормёжки. Если функцию не кормить, то она станет впуклой!

BratBrat    Cum, 23/08/2019 - 18:27

Если функцию кормить неправильными аргументами, её постигнет такая же незавидная участь... Sad smile

St. SolSt. Sol    Cum, 23/08/2019 - 18:02

Читайте внимательнее: только для НЕКОТОРЫХ a и b строго больше (а для остальных: РАВНО)!
Оценка: 2

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 18:06

Я не понимаю знаков =/= и термина "некоторые". Все - это тоже некоторые. Поставьте задачу корректно, пожалуйста. Есть строгие термины "почти везде", "почти всегда".

St. SolSt. Sol    Cum, 23/08/2019 - 18:10

=/= означает НЕ РАВНО (хотя это совсем неважно здесь).
Некоторые означает: не для всех a и b соблюдается равенство.

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 18:18

Все - это тоже некоторые. Разъяснение не принято. Такие задачи следует правильно формулировать, чтобы было интересно. Множество пар, где нет равенства - конечно, счетно, несчетно? Множество пар, где есть равенство конечно, счетно, несчетно? Функция на вещественными числами или над иным множеством?

BratBrat    Cum, 23/08/2019 - 18:19
Pinhas Zelenogorsky escreveu:

Все - это тоже некоторые. Разъяснение не принято.

Попросите Кличко переформулировать, он вам скажет: не только лишь все. Teeth smile

St. SolSt. Sol    Cum, 23/08/2019 - 18:23

Множество пар, где нет равенства - конечно, счетно, несчетно? - Не имеет значения
Множество пар, где есть равенство конечно, счетно, несчетно? - Не имеет значения, Оба множества - ненулевые.
Функция на вещественными числами или над иным множеством? - вещественными

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 18:27

Ну тогда под Ваши критерии подходит любая выпуклая функция. Например x^2.
Если надо, чтобы строе равенство было не всегда, можно провести два отрезка, а между ними "повесить" функцию как веревку без сильного провисания.
St. Sol, Вы нас заинтриговали, но чёткой постановки не дали. Прямо как вчера.

St. SolSt. Sol    Cum, 23/08/2019 - 18:36

Задачка не моя и это было очень давно, поэтому я не помню точной формулировки. Если бы я решил ее в 16 лет, то вся моя жизнь сложилась бы по-другому.

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 18:37

А, ну тогда мы тут с кондачка явно не решим. Тут наверно какой-нибудь трюк типа канторовой лестницы подразумевается.

St. SolSt. Sol    Cum, 23/08/2019 - 19:08

Даже круче. В те времена я не имел понятия о непрерывно разрывных функциях.

Sophia_Sophia_    Cum, 23/08/2019 - 18:39

Ничего себе!
А можно немного подробнее?

St. SolSt. Sol    Cum, 23/08/2019 - 18:50

Если б я решил ее, то занял бы первое место на Всероссийской мат. олимпиаде, поступил бы без конкурса на мехмат МГУ, и был бы чистым математиком по теории чисел. А за третье место увы не дают ничего кроме красивого диплома.

Sophia_Sophia_    Cum, 23/08/2019 - 18:59

Круто.
И третье место тоже круто, я считаю.

Для меня само словосочетание "Всероссийская Олимпиада" является чем-то нереальным. (сама выше областных не поднималась, а в областных призовое место занимала только в олимпиаде по русскому языку в 10 классе)

St. SolSt. Sol    Cum, 23/08/2019 - 18:41

Такой вариант не пойдёт: если a и b находятся по разные стороны перелома (перехода между функциями Ax+B и Cx^2), то левая часть будет меньше правой!

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 21:06

Наверно пора заканчивать. Я имел в виду форму нунчаков, где палочки под углом. Выпуклое множество, некоторые части границы которого - прямые линии. Да и просто выпуклый многоугольник подойдет. Если вспомните задачку - дайте пожалуйста знать, будет интересно подумать.

BratBrat    Cmt, 24/08/2019 - 01:40

Так что, еще не нашли функцию? Вы по каким приметам ищете-то? Выпуклая, т.е. хорошо упитанная, кормленная правильными аргументами, достаточно гладкая, т.е. без разрывов, или как?

St. SolSt. Sol    Cmt, 24/08/2019 - 01:44

I know the answer. Should I give it away since I don't remember the problem statement exactly?

Pinhas ZelenogorskyPinhas Zelenogorsky    Cmt, 24/08/2019 - 01:51

Выпуклая функция: если нарисовать график функции и соединить любые ее две точки отрезком, то он будет целиком лежать над графиком. Выпуклое множество - множество, которое вместе с любыми своими двумя точками содержит и весь отрезок, соединяющий эти точки. Круг, например, или квадрат.

St. SolSt. Sol    Cmt, 24/08/2019 - 01:57

The question was trickier than I remembered and posted. The solution is the Dirichlet function, discontinuous at every point.

Pinhas ZelenogorskyPinhas Zelenogorsky    Cmt, 24/08/2019 - 02:17

Ага, я почти угадал с канторовой лестницей!
1) если оба аргумента рациональны, то и полусумма рациональна - случай равенства
2) Если один аргумент рационален, другой иррационален, то полусумма иррациональна
( f(a)+ f(b) )/2 = 1/2 > f( (a+b)/2 ) = 0
3) Но вот если оба иррациональны, то полусумма может быть и рациональна, и тогда неравенство нарушается. Мощность множества таких иррациональных пар (a, b), дающих в сумме рациональное число, очевидно несчетно.
Чего-то не хватает. Собственно, насколько я помню, из выпуклости следует непрерывность.
St.Sol, извините, если я надоел, просто можно этот вопрос закрыть. Но я не слышал про подобное свойство ф-ции Дирихле, очень интересно.

BratBrat    Cum, 23/08/2019 - 18:12
Pinhas Zelenogorsky wrote:

Я не понимаю знаков =/=

Это знак ≠
Просто когда a=b функции будут равны по определению.

BratBrat    Cum, 23/08/2019 - 18:07

Это как у Оруэлла: все равны, но некоторые равнее. Свинье хорошо бы это знать...

BratBrat    Cum, 23/08/2019 - 18:35

Харьковский Университет Инженеров Транспортной Авиации

Sophia_Sophia_    Cum, 23/08/2019 - 18:36

Упс. Я забыла уточнить, что универ на территории российской федерации.

BratBrat    Cum, 23/08/2019 - 18:51

Хабаровский тогда. Харьковчане не промахиваются.

Sophia_Sophia_    Cum, 23/08/2019 - 18:54

Он не Хабаровский, а Тихоокеанский. (есть врач знакомый оттуда)

Снова мимо.
И я уверена, что там как везде мехмат, а не матмех.

BratBrat    Cum, 23/08/2019 - 19:08
Sophia_ escreveu:

Он не Хабаровский, а Тихоокеанский. (есть врач знакомый оттуда)

Врач из Хабаровского Университета Инженеров Тихоокеанской Авиации? Это круто...

Sophia_Sophia_    Cum, 23/08/2019 - 19:20

При чем тут авиация, Брат.
Вы сказали

Brat escreveu:

Хабаровский тогда. Харьковчане не промахиваются.

Спокойной ночи.

BratBrat    Cmt, 24/08/2019 - 01:46
Sophia_ a écrit :

При чем тут авиация, Брат.
Вы сказали

Brat a écrit :

Хабаровский тогда. Харьковчане не промахиваются.

Спокойной ночи.

За деревьями леса не видите, КВН не смотрите, то, что сами писали мне о своей недолгой учёбе в альма-матер СашБаша,- не помните... Тяжелый случай... С добрым утром!

Sophia_Sophia_    Cmt, 24/08/2019 - 07:10
Brat wrote:

За деревьями леса не видите, КВН не смотрите, то, что сами писали мне о своей недолгой учёбе в альма-матер СашБаша,- не помните... Тяжелый случай... С добрым утром!

А! Так Вы меня троллили всё это время!

barsiscevbarsiscev    Cum, 23/08/2019 - 19:49

В чём разница между Мехматом и Матмехом?
У первого мех спереди, а у второго - сзади!

Sophia_Sophia_    Cum, 23/08/2019 - 19:53

И ведь не поспоришь!..

Я, по-моему, когда-то уже упоминала, что декана звали Магаз Оразкимович.
Те, кто мог с первого раза выговорить его имя-отчество, получали много плюсиков к карме и репутации. Regular smile

barsiscevbarsiscev    Cum, 23/08/2019 - 20:37

Анек в тему:
Чапаев слышит как Петька ходит по крыше, грохоча сапожищами.
Он ему кричит; Чо ты там на крыше делаешь?
Петька в ответ: Да антенну натягиваю, В.И.
Чапаев: Ну и имена теперь у чувих!

BlackSea4everBlackSea4ever    Cum, 23/08/2019 - 20:53

Дорогие друзья и недруги,
Мы вас приглашаем в https://lyricstranslate.com/en/forum/members-only/русский-флуд

Jules and I are hoping you will join us in the movement to remove senseless conversations from the translation pages. Don't get me wrong, some are irresistible and require participation like the ones on math challenges or one of my "poetical" rants against Trump.
Just link to your choice of song and go at it, endlessly, unnecessarily, incessantly - just don't flood translation pages...

Besides I need one place where I can find your jokes - Zhenya saved me twice with his...
See you there

barsiscevbarsiscev    Cum, 23/08/2019 - 20:59

Всё-таки спереди-сзади - лучше в это случае, тем более здесь уже классика.

Pinhas ZelenogorskyPinhas Zelenogorsky    Cum, 23/08/2019 - 21:00

София, мы Вас с легкостью по Магазу вычислили.

Sophia_Sophia_    Cum, 23/08/2019 - 21:03

Так я на то и рассчитывала Regular smile

Sophia_Sophia_    Cum, 23/08/2019 - 21:11

Не может быть!
Блин, меня память подводит, значит.
Значит, это должно быть так: "везде -мехмат, только в УрГУ и СПбГУ -матмех"

barsiscevbarsiscev    Cum, 23/08/2019 - 21:31

А у нас в Казани шЮтка была: Мехмат - это смех с матом.
Что свидетельствует у высоком уровне культуры!
Ещё шЮтка:
Один чувак вышел на КабМин Татарии с предложением
о создании Министерства Морского Флота республики.
Ему возражают - От нас до ближайшего моря 1500 км.
А товариСЧ упирается -У нас же есть Мин Культуры.
(Тонкий намёк на полное её отсутствие в республике.)
До нам до Оллжаса - недалеко!

barsiscevbarsiscev    Cum, 23/08/2019 - 21:10

Так не томите, дайте результат вычислений.
А то у нас Магаз = Магазин (сокращённо).

BratBrat    Cmt, 24/08/2019 - 01:22

Матмех->Мехмат->Мехмет->Махмут->Магаз (тут явно несколько промежуточных преобразований пропущено, топологи частенько этим грешат)
Кстати, чтобы понять суть профессии тополога, надо подвергнуть его прямому отражению: тополог->голопот (т.е. работает в поте лица и при этом гол как сокол)

Sophia_Sophia_    Cum, 23/08/2019 - 18:40

Блин, хотела отредактировать коммент выше и промахнулась, удалила.

BlackSea4everBlackSea4ever    Cum, 23/08/2019 - 16:37

Oh, lord, please no math - else, I'll start ranting about Trump. He is the puzzle that changed my life in 18+.
I only wish I could prove he doesn't exist.

BratBrat    Cum, 23/08/2019 - 16:46

St. Sol забыл добавить условия, которые я упомянул, в задачу.
Логика решения задачи такова: человек, которому известно произведение двух несовпадающих, ненулевых натуральных чисел, может однозначно определить искомые числа лишь в одном случае - когда это произведение - простое число, тогда одно из искомых чисел будет равно этому самому произведению, а второе - единице. Во всех остальных случаях возможны как минимум 2 варианта.
Человек, знающий сумму искомых чисел вообще тонет в море вариантов, и единственным (при ненулевых и несовпадающих числах) стопроцентным вариантом будет 1+2=3. Но в этом случае и первый человек будет знать ответ.
Берём следующий после простейшего случай несовпадающих и ненулевых чисел: 2+3=5=4+1 - у "сумматора" уже возникает два варианта, поэтому он честно заявляет, что не знает ответ.
2*3=6=6*1 - у "мультипликатора" тоже два варианта, и он тоже заявляет, что не знает ответа.
Но тут "сумматор" догадывается, что если бы числа были 4 и 1, мультипликатор (при условии несовпадения чисел) сразу бы догадался по их произведению - 4=4*1. И он догадывается, что это 2 и 3, о чём радостно сообщает. Тут уже тему вкуривает и мультипликатор. Ведь если бы у сумматора была сумма 7, то у него была бы куча вариантов и он фиг бы догадался. Wink smile

Pages